# Lab 7 Learning rate and Evaluation
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
tf.set_random_seed(777) # for reproducibility
x_data = [[1, 2, 1, 1],
[2, 1, 3, 2],
[3, 1, 3, 4],
[4, 1, 5, 5],
[1, 7, 5, 5],
[1, 2, 5, 6],
[1, 6, 6, 6],
[1, 7, 7, 7]]
y_data = [[0, 0, 1],
[0, 0, 1],
[0, 0, 1],
[0, 1, 0],
[0, 1, 0],
[0, 1, 0],
[1, 0, 0],
[1, 0, 0]]
X = tf.placeholder("float", [None, 4])
Y = tf.placeholder("float", [None, 3])
# 학점이 ABC 라고 했을 때 3개
nb_classes = 3
W = tf.Variable(tf.random_normal([4, nb_classes]), name='weight')
b = tf.Variable(tf.random_normal([nb_classes]), name='bias')
# 가설
# 행렬 연산
hypothesis = tf.nn.softmax(tf.matmul(X, W) + b)
# Cross entropy cost/loss
cost = tf.reduce_mean(-tf.reduce_sum(Y * tf.log(hypothesis), axis=1))
# gradinet decent
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.1).minimize(cost)
# Launch graph
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for step in range(2001):
_, cost_val = sess.run([optimizer, cost], feed_dict={X: x_data, Y: y_data})
if step % 200 == 0:
print(step, cost_val)
print('--------------')
# Testing & One-hot encoding
a = sess.run(hypothesis, feed_dict={X: [[1, 11, 7, 9]]})
print(a, sess.run(tf.argmax(a, 1)))
# [[3.9294059e-03 9.9606246e-01 8.0813606e-06]] [1]
print('--------------')
b = sess.run(hypothesis, feed_dict={X: [[1, 3, 4, 3]]})
print(b, sess.run(tf.argmax(b, 1)))
# [[0.88141716 0.1107361 0.00784673]] [0]
print('--------------')
c = sess.run(hypothesis, feed_dict={X: [[1, 1, 0, 1]]})
print(c, sess.run(tf.argmax(c, 1)))
# [[1.2968618e-08 3.4041423e-04 9.9965954e-01]] [2]
print('--------------')
all = sess.run(hypothesis, feed_dict={X: [[1, 11, 7, 9], [1, 3, 4, 3], [1, 1, 0, 1]]})
print(all, sess.run(tf.argmax(all, 1)))
참조
[1] - https://github.com/hunkim/DeepLearningZeroToAll/blob/master/lab-06-1-softmax_classifier.py
'유튜브 > 대충 배우는 머신러닝 AI(영상삭제)' 카테고리의 다른 글
16 - Deep Learning의 개념 (0) | 2020.02.20 |
---|---|
15 - kaggle 타이타닉 생존자 예측 (0) | 2020.02.20 |
13 - multinomial logistic classification (0) | 2020.02.14 |
12 - logistic classification 실습 (0) | 2020.02.13 |
11 - logistic classification cost (0) | 2020.02.10 |