XOR 문제를 코드로 구현해봅니다.
기존 방식대로
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
import numpy as np
tf.set_random_seed(777)
x_data = np.array([[0, 0], [0, 1], [1, 0], [1, 1]], dtype=np.float32)
y_data = np.array([[0], [1], [1], [0]], dtype=np.float32)
X = tf.placeholder(tf.float32, [None, 2])
Y = tf.placeholder(tf.float32, [None, 1])
W = tf.Variable(tf.random_normal([2, 1]), name="weight")
b = tf.Variable(tf.random_normal([1]), name="bias")
hypothesis = tf.sigmoid(tf.matmul(X, W) + b)
cost = -tf.reduce_mean(Y * tf.log(hypothesis) + (1 - Y) * tf.log(1 - hypothesis))
train = tf.train.GradientDescentOptimizer(learning_rate=0.1).minimize(cost)
predicted = tf.cast(hypothesis > 0.5, dtype=tf.float32)
accuracy = tf.reduce_mean(tf.cast(tf.equal(predicted, Y), dtype=tf.float32))
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for step in range(10001):
_, cost_val, w_val = sess.run(
[train, cost, W], feed_dict={X: x_data, Y: y_data}
)
if step % 100 == 0:
print(step, cost_val, w_val)
h, c, a = sess.run(
[hypothesis, predicted, accuracy], feed_dict={X: x_data, Y: y_data}
)
print("\nHypothesis: ", h, "\nCorrect: ", c, "\nAccuracy: ", a)
Layer를 추가해서 XOR 해결
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
import numpy as np
tf.set_random_seed(777) \
x_data = np.array([[0, 0], [0, 1], [1, 0], [1, 1]], dtype=np.float32)
y_data = np.array([[0], [1], [1], [0]], dtype=np.float32)
X = tf.placeholder(tf.float32, [None, 2])
Y = tf.placeholder(tf.float32, [None, 1])
# Layer를 한개 더 만들어서 처리
W1 = tf.Variable(tf.random_normal([2, 2]), name='weight1')
b1 = tf.Variable(tf.random_normal([2]), name='bias1')
layer1 = tf.sigmoid(tf.matmul(X, W1) + b1)
W2 = tf.Variable(tf.random_normal([2, 1]), name='weight2')
b2 = tf.Variable(tf.random_normal([1]), name='bias2')
hypothesis = tf.sigmoid(tf.matmul(layer1, W2) + b2)
cost = -tf.reduce_mean(Y * tf.log(hypothesis) + (1 - Y) * tf.log(1 - hypothesis))
train = tf.train.GradientDescentOptimizer(learning_rate=0.1).minimize(cost)
predicted = tf.cast(hypothesis > 0.5, dtype=tf.float32)
accuracy = tf.reduce_mean(tf.cast(tf.equal(predicted, Y), dtype=tf.float32))
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for step in range(10001):
_, cost_val = sess.run([train, cost], feed_dict={X: x_data, Y: y_data})
if step % 100 == 0:
print(step, cost_val)
h, p, a = sess.run(
[hypothesis, predicted, accuracy], feed_dict={X: x_data, Y: y_data}
)
print(f"\nHypothesis:\n{h} \nPredicted:\n{p} \nAccuracy:\n{a}")
참조
'유튜브 > 대충 배우는 머신러닝 AI(영상삭제)' 카테고리의 다른 글
19 - MNIST deep (0) | 2020.02.20 |
---|---|
18 - ReLU (0) | 2020.02.20 |
16 - Deep Learning의 개념 (0) | 2020.02.20 |
15 - kaggle 타이타닉 생존자 예측 (0) | 2020.02.20 |
14 - multinomial logistic classification 실습 (18) | 2020.02.14 |